메뉴닫기

메뉴 전체보기


퀵 메뉴

최근 본 0 X

TOP

전체도서

Biostatistics for Oral Healthcare
  • 출판사 Wiley-Blackwell|
  • 저자
    JayS.Kim RonaldJ.Dailey
  • ISBN 9780813828183
  • 발행일 2007-12-01
  • 페이지 0 쪽
  • 정가 197,500 원
  • 판매가 197,500 원
  • 적립금 0 원
  • 배송비전국 무료배송 (CJ택배)
  • 배송정보평균 3일이내 발송(토,일,공휴일 제외)
  • 수량
    -+
총 상품금액 197,500원

Table of contents

 

Chapter 1. Introduction.

1. What Is Biostatistics?.

2. Why Do I Need Statistics?.

3. How Much Mathematics Do I Need?.

4. How to Study Statistics?.

5. Reference.

 

Chapter 2. Summarizing Data.

1. Raw Data and Basic Terminology.

2. The Levels of Measurements.

3. Frequency Distributions.

Frequency Tables.

Relative Frequency.

4. Graphs.

Bar Graphs.

Pie Charts.

Line Graphs.

Histograms.

Stem and Leaf Plots.

5. Clinical Trials.

6. Confounding Variables.

7. Exercises.

8. References.

 

Chapter 3. Measures of Central Tendency, Dispersion, and Skewness.

1. Introduction.

2. Mean.

3. Weighted Mean.

4. Median.

5. Mode.

6. Geometric Mean.

7. Harmonic Mean.

8. Mean and Median of Grouped Data.

9. Mean of Two or More Means.

10. Range.

11. Percentiles and Interquartile Range.

12. Box-whisker Plot.

13. Variance and Standard Deviation.

14. Coefficient of Variation.

15. Variance of the Grouped Data.

16. Skewness.

17. Exercises.

18. References.

 

Chapter 4. Probability.

1. Introduction.

2. Sample Space and Events.

3. Basic Properties of Probability.

4. Independence and Mutually Exclusive Events.

5. Conditional Probability.

6. Bayes Theorem.

7. Rates and Proportions.

Prevalence and Incidence.

Sensitivity and Specificity.

Relative Risk and Odds Ratio.

8. Exercises.

9. References.

 

Chapter 5. Probability Distributions.

1. Introduction.

2. Binomial Distribution.

3. Poisson Distribution.

4. Poisson Approximation to Binomial Distribution.

5. Normal Distribution.

Properties of Normal Distributions.

Standard Normal Distribution.

Using Normal Probability Table.

Further Applications of Normal Probability.

Normal Approximation to the Binomial Distribution.

6. Exercises.

7. References.

 

Chapter 6. Sampling Distributions.

1. Introduction.

2. Sampling Distribution of the Mean.

Standard Error of the Sample Mean.

Central Limit Theorem.

3. Student's t Distribution.

4. Exercises.

5. References.

 

Chapter 7. Confidence Intervals and Sample Size.

1. Introduction.

2. Confidence Intervals for the Mean and Sample Size n when Is Known.

3. Confidence Intervals for the Mean when is Not Known.

4. Confidence Intervals for the Binomial Parameter p.

5. Confidence Intervals for the Variances and Standard Deviations.

6. Exercises.

7. References.

 

Chapter 8. Hypothesis Testing: One Sample Case.

1. Introduction.

2. Concept of Hypothesis Testing.

3. One-tailed Z Test of the Mean of a Normal Distribution When Is Known.

4. Two-tailed Z Test of the Mean of a Normal Distribution When Is Known.

5. t Test of the Mean of a Normal Distribution.

6. The Power of a Test and Sample Size.

7. One-Sample Test for a Binomial Proportion.

8. One-Sample Test for the Variance of a Normal Distribution.

9. Exercises.

10. References.

 

Chapter 9. Hypothesis Testing: Two-Sample Case.

1. Introduction.

2. Two Sample Z Test for Comparing Two Means.

3. Two Sample t Test for Comparing Two Means with Equal Variances.

4. Two Sample t Test for Comparing Two Means with Unequal Variances.

5. The Paired t Test.

6. Z Test for Comparing Two Binomial Proportions.

7. The Sample Size and Power of a Two Sample Test.

Estimation of a Sample Size.

The Power of a Two Sample Test.

8. The F Test for the Equality of Two Variances.

9. Exercises.

10. References.

 

Chapter 10. Categorical Data Analysis.

1. Introduction.

2. 2 x 2 Contingency Table.

3. r x c Contingency Table.

4. The Cochran-Mantel-Haenszel Test.

5. The McNemar Test.

6. The Kappa Statistic.

7. Goodness of Fit Test.

8. Exercises.

9. References.

Chapter 11. Regression Analysis and Correlation.

1. Introduction.

2. Simple Linear Regression.

Description of Regression Model.

Estimation of Regression Function.

Aptness of a Model.

3. Correlation Coefficient.

Significance of Correlation Coefficient.

4. Coefficient of Determination.

5. Multiple Regression.

6. Logistic Regression.

The Logistic Regression Model.

Fitting the Logistic Regression Model.

7. Multiple Logistic Regression Model.

8. Exercises.

9. References.

 

Chapter 12. One-Way Analysis of Variance.

1. Introduction.

2. Factors and Factor Levels.

3. Statement of the Problem and Model Assumptions.

4. Basic Concepts in ANOVA.

5. F-test for Comparison of k Population Means.

6. Multiple Comparisons Procedures.

Least Significant Difference Method.

Bonferroni Approach.

Scheffe's Method.

Tukey's Procedure.

7. One-way ANOVA Random Effects Model.

8. Test for Equality of k Variances.

Bartlett's Test.

Hartley's Test.

9. Exercises.

10. References.

Chapter 13. Two-Way Analysis of Variance.

1. Introduction.

2. General Model.

3. Sum of Squares and Degrees of Freedom.

4. F Test.

5. Exercises.

6. References.

 

Chapter 14. Non-Parametric Statistics.

1. Introduction.

2. The Sign Test.

3. The Wilcoxon Rank Sum Test.

4. The Wilcoxon Signed Rank Test.

5. The Median Test.

6. The Kruskal-Wallis Test.

7. The Friedman Test.

8. The Permutation Test.

9. The Cochran Test.

10. The Squared Rank Test For Variances.

11. Spearma's Rank Correlation Coefficient.

12. Exercises.

13. References.

 

Chapter 15. Survival Analysis.

1. Introduction.

2. Person-Time Method and Mortality Rate.

3. Life Table Analysis.

4. Hazard Function.

5. Kaplan-Meier Product Limit Estimator.

6. Comparing Survival Functions.

Geha's Generalized Wilcoxon Test.

The Logrank Test.

The Mantel and Haenszel Test.

7. Piecewise Exponential Estimator (PEXE).

Small Sample Illustration.

General Description of PEXE.

An Example.

Properties of PEXE and Comparisons with Kaplan-Meier Estimator.

8. References.

 

Appendix.

Solutions to Selected Exercises.

Table A. Table of Random Numbers.

Table B. Table of Binomial Probabilities.

Table C. Table of Poisson Probabilities.

Table D. Standard Normal Probabilities.

Table E. Percentiles of the t Distribution.

Table F. Percentiles of the Distribution.

Table G. Percentiles of the F Distribution

Table of contents

 

Chapter 1. Introduction.

1. What Is Biostatistics?.

2. Why Do I Need Statistics?.

3. How Much Mathematics Do I Need?.

4. How to Study Statistics?.

5. Reference.

 

Chapter 2. Summarizing Data.

1. Raw Data and Basic Terminology.

2. The Levels of Measurements.

3. Frequency Distributions.

Frequency Tables.

Relative Frequency.

4. Graphs.

Bar Graphs.

Pie Charts.

Line Graphs.

Histograms.

Stem and Leaf Plots.

5. Clinical Trials.

6. Confounding Variables.

7. Exercises.

8. References.

 

Chapter 3. Measures of Central Tendency, Dispersion, and Skewness.

1. Introduction.

2. Mean.

3. Weighted Mean.

4. Median.

5. Mode.

6. Geometric Mean.

7. Harmonic Mean.

8. Mean and Median of Grouped Data.

9. Mean of Two or More Means.

10. Range.

11. Percentiles and Interquartile Range.

12. Box-whisker Plot.

13. Variance and Standard Deviation.

14. Coefficient of Variation.

15. Variance of the Grouped Data.

16. Skewness.

17. Exercises.

18. References.

 

Chapter 4. Probability.

1. Introduction.

2. Sample Space and Events.

3. Basic Properties of Probability.

4. Independence and Mutually Exclusive Events.

5. Conditional Probability.

6. Bayes Theorem.

7. Rates and Proportions.

Prevalence and Incidence.

Sensitivity and Specificity.

Relative Risk and Odds Ratio.

8. Exercises.

9. References.

 

Chapter 5. Probability Distributions.

1. Introduction.

2. Binomial Distribution.

3. Poisson Distribution.

4. Poisson Approximation to Binomial Distribution.

5. Normal Distribution.

Properties of Normal Distributions.

Standard Normal Distribution.

Using Normal Probability Table.

Further Applications of Normal Probability.

Normal Approximation to the Binomial Distribution.

6. Exercises.

7. References.

 

Chapter 6. Sampling Distributions.

1. Introduction.

2. Sampling Distribution of the Mean.

Standard Error of the Sample Mean.

Central Limit Theorem.

3. Student's t Distribution.

4. Exercises.

5. References.

 

Chapter 7. Confidence Intervals and Sample Size.

1. Introduction.

2. Confidence Intervals for the Mean and Sample Size n when Is Known.

3. Confidence Intervals for the Mean when is Not Known.

4. Confidence Intervals for the Binomial Parameter p.

5. Confidence Intervals for the Variances and Standard Deviations.

6. Exercises.

7. References.

 

Chapter 8. Hypothesis Testing: One Sample Case.

1. Introduction.

2. Concept of Hypothesis Testing.

3. One-tailed Z Test of the Mean of a Normal Distribution When Is Known.

4. Two-tailed Z Test of the Mean of a Normal Distribution When Is Known.

5. t Test of the Mean of a Normal Distribution.

6. The Power of a Test and Sample Size.

7. One-Sample Test for a Binomial Proportion.

8. One-Sample Test for the Variance of a Normal Distribution.

9. Exercises.

10. References.

 

Chapter 9. Hypothesis Testing: Two-Sample Case.

1. Introduction.

2. Two Sample Z Test for Comparing Two Means.

3. Two Sample t Test for Comparing Two Means with Equal Variances.

4. Two Sample t Test for Comparing Two Means with Unequal Variances.

5. The Paired t Test.

6. Z Test for Comparing Two Binomial Proportions.

7. The Sample Size and Power of a Two Sample Test.

Estimation of a Sample Size.

The Power of a Two Sample Test.

8. The F Test for the Equality of Two Variances.

9. Exercises.

10. References.

 

Chapter 10. Categorical Data Analysis.

1. Introduction.

2. 2 x 2 Contingency Table.

3. r x c Contingency Table.

4. The Cochran-Mantel-Haenszel Test.

5. The McNemar Test.

6. The Kappa Statistic.

7. Goodness of Fit Test.

8. Exercises.

9. References.

Chapter 11. Regression Analysis and Correlation.

1. Introduction.

2. Simple Linear Regression.

Description of Regression Model.

Estimation of Regression Function.

Aptness of a Model.

3. Correlation Coefficient.

Significance of Correlation Coefficient.

4. Coefficient of Determination.

5. Multiple Regression.

6. Logistic Regression.

The Logistic Regression Model.

Fitting the Logistic Regression Model.

7. Multiple Logistic Regression Model.

8. Exercises.

9. References.

 

Chapter 12. One-Way Analysis of Variance.

1. Introduction.

2. Factors and Factor Levels.

3. Statement of the Problem and Model Assumptions.

4. Basic Concepts in ANOVA.

5. F-test for Comparison of k Population Means.

6. Multiple Comparisons Procedures.

Least Significant Difference Method.

Bonferroni Approach.

Scheffe's Method.

Tukey's Procedure.

7. One-way ANOVA Random Effects Model.

8. Test for Equality of k Variances.

Bartlett's Test.

Hartley's Test.

9. Exercises.

10. References.

Chapter 13. Two-Way Analysis of Variance.

1. Introduction.

2. General Model.

3. Sum of Squares and Degrees of Freedom.

4. F Test.

5. Exercises.

6. References.

 

Chapter 14. Non-Parametric Statistics.

1. Introduction.

2. The Sign Test.

3. The Wilcoxon Rank Sum Test.

4. The Wilcoxon Signed Rank Test.

5. The Median Test.

6. The Kruskal-Wallis Test.

7. The Friedman Test.

8. The Permutation Test.

9. The Cochran Test.

10. The Squared Rank Test For Variances.

11. Spearma's Rank Correlation Coefficient.

12. Exercises.

13. References.

 

Chapter 15. Survival Analysis.

1. Introduction.

2. Person-Time Method and Mortality Rate.

3. Life Table Analysis.

4. Hazard Function.

5. Kaplan-Meier Product Limit Estimator.

6. Comparing Survival Functions.

Geha's Generalized Wilcoxon Test.

The Logrank Test.

The Mantel and Haenszel Test.

7. Piecewise Exponential Estimator (PEXE).

Small Sample Illustration.

General Description of PEXE.

An Example.

Properties of PEXE and Comparisons with Kaplan-Meier Estimator.

8. References.

 

Appendix.

Solutions to Selected Exercises.

Table A. Table of Random Numbers.

Table B. Table of Binomial Probabilities.

Table C. Table of Poisson Probabilities.

Table D. Standard Normal Probabilities.

Table E. Percentiles of the t Distribution.

Table F. Percentiles of the Distribution.

Table G. Percentiles of the F Distribution

주문 안내


- 13시 이후 무통장 입금 주문건은 익일 오전중에 입금 확인 후 결제완료로 넘어갑니다. 

- 무통장 입금의 경우 주문일 기준, 5일후에도 입금이 되지않을 시 자동주문취소 됩니다.

- 입금완료 후 하루이상 지났음에도(연휴, 주말, 공휴일 제외) 결제완료로 넘어가지 않으면 02-922-0840으로 전화주세요.

- 입금확인은 주문하실 때 입력하신 입금자명과 실제 입금자명이 일치해야 확인이 가능합니다. 



배송 및 환불,교환 안내


자사 도서(입금완료 기준)

13시 이전 : 당일출고 

13시 이후 : 익일출고

 

- 당일 13시 이전에 주문과 결제가 확인 된 주문건에 한해 당일출고를 진행합니다.(단,원서 제외)

- 월요일 ~ 금요일 사이에 출고가 진행되며, 주말 및 공휴일,연휴기간에는 배송업무가 없으므로 구매에 참고 바랍니다.

- 배송 기간은 하루에서 이틀정도 소요되며(도서산간제외), 배송시간은 안내가 어렵습니다. 

- 교재시즌에는 최대 5일까지 소요되오니, 참고 바랍니다.

 

해외원서의 경우

본사에 재고가 있을 경우 : 13시 이전 입금에 한해 당일출고

본사에 재고가 없을 경우 : 유선으로 주문진행 여부를 여쭤본 후, 진행을 하신다면 해외 직수입 후 출고해드립니다.

                          도서 수령까지는 휴일 제외, 2~3주가 소요되며, 변동사항이 있을시 공지해드립니다.

 

 

배송비 안내

- 무료배송

- 파본이 아닌 단순 변심에 의한 반품 및 교환 시 왕복배송비 또는 편도배송비를 부담해주셔야합니다.

 

 

반품안내

전자상거래에 의한 소비자보호에 관한 법률에 의거 반품 가능 기간내에는 반품을 요청하실 수 있습니다.

 

 

반품가능기간

- 단순변심 : 물품 수령 후 7일 이내 (단, 고객님의 요청으로 주문된 해외원서 제외)

 


교환이나 반품, 환불이 가능한 경우

- 주문하신 것과 다른 상품을 받으신 경우

- 파본인 상품을 받으신 경우

- 배송과정에서 손상된 상품을 받으신 경우

 


교환이나 반품, 환불이 불가능한 경우

- 개봉된 DVD, CD-ROM, 카세트테이프, USB (단, 배송 중 파손된 상품 제외)

- 탐독 또는 제본의 흔적이 있는 경우

- 소비자의 실수로 상품이 훼손된 경우

- 소비자의 주문으로 수입된 해외 도서인 경우

- 수령일로부터 7일이 지난 상품의 경우

 

 

반품절차

- 책을 받으신 3일 이내에 고객센터 02-922-0840 혹은 카톡문의를 통해 반품의사를 꼭 알려주세요.

- 반품의사없이 보내신 도서는 확인이 어렵습니다.

 


환불방법

- 카드결제 시 카드 승인취소, 무통장입금시 현금 환불 혹은 적립금으로 변환 가능합니다.

- 주문자 성함,전화번호,도서명과 함께 환불 계좌(예금주)를 알려주시면 빠른 처리 가능합니다.

 

 

반품주소

(04782) 서울 성동구 연무장5가길 25, SK V1 Tower 1507호

 

유의하세요! 문의글 혹은 악의적인 비방글은 무통보 삭제됩니다. 나의 상품평 쓰기

번호 제목 작성자 평점 작성일
등록된 자료가 없습니다!!

상품에 관한 문의가 아닌 배송/교환 관련 문의는 1:1상담을 이용해 주세요. 상품문의하기 1:1 문의하기

번호 답변상태 제목 작성자 작성일
등록된 자료가 없습니다!!

찾으시는 도서가 없다면 연락주세요!02-922-0840