
제2장

골유도 재생술

(Guided Bone Regeneration: GBR)

차단막은 1950년 말~1960년 초에 정형외과 영역에서 결손부 치유 목적으로 처음 도입되었으며, 치과 분야에서는 1968년 Boyne이 하악골 연속성 결손부의 치유를 촉진시키기 위해 GTR 원리(Millipore filter+Mesh carrier)를 처음 도입하였다. Nyman 등이 치주 결손부 치료에 차단막 사용을 언급하면서 조직유도 재생술(GTR)의 개념을 제창했으며, 1989년 Dahlin 등은 티타늄 임프란트 주변의 열개성 결손 부(dehiscence defect)에 차단막을 적용한 후 골형성에 대한 동물실험을 진행하였다. 그 결과 임프란트 주변 열개성 결손부에 e-PTFE를 사용한 경우가 사용하지 않은 경우에 비해 유의성 있는 골재생이 이루어 졌다고 보고하면서 차단막이 주변 골수에서 기원된 혈관 및 골형성세포들을 위한 적절한 환경을 제공한다 고 언급하였다. 한편 여러 가지 흡수성 및 비흡수성 차단막을 이용한 골유도 재생술이 초기 골아세포의 부 착을 촉진시킨다는 실험적 연구 보고가 있었다. 그 후 최근까지 임프란트 주변 결손부 수복 및 골유도 재 생술 분야에서 차단막이 많이 사용되고 있다.

그러나 반드시 차단막 사용이 필요한가? 사용한다면 흡수성과 비흡수성 차단막 중 어느 것이 좋은가? 차단막 하방에 형성된 신생골은 정상골과 유사할 것인가? 등에 대한 논란은 계속되며 각각의 학자들이 자 신의 실험 및 임상 연구 결과를 토대로 다양한 의견을 제시하고 있으며, 실재 임상에 임하는 치과의사들에 게 많은 혼동을 주고 있다. 이런 점에 대해 2006년 스위스에서 개최되었던 Consensus conference에서 정리된 내용들이 임상의들에게 많은 도움을 줄 것이다.

골유도 재생술을 통해 치조능을 수직 혹은 수평적으로 증강시킬 수 있는 양에 대해서 많은 치과의사가 궁금해하고 있으며, 일부 학자들은 수직으로 증강시킬 수 있는 양은 2~7mm, 수평적으로 증강시킬 수 있 는 양은 2~4.5mm라고 발표한 바 있다. 지금까지 수행되어 왔던 수많은 연구는 매우 다양한 골이식 재료 가 사용되었고, 표준화된 전향적 연구가 시행된 논문은 거의 없는 상태이기 때문에 골이식재의 선택과 골유 도 재생술의 성적과의 연관성에 대해서는 확실하게 결론내릴 수 없다.

골유도 재생술의 성공에 영향을 미치는 요소

1) 세포 차단성

세공이 전혀 없거나 미세한 세공을 가짐으로써 치은결합조직의 세포 유입을 차단

2) 궁간 확보 및 유지

차단막의 물리적 강도가 우수해야 하며 골이식 혹은 티타늄 나사나 핀 등을 이용한 tenting을 통해 공 간을 확보하는 것이 중요하다. 골이식을 이용한 공간 확보가 다른 방법(screw, pin 등을 이용한 tenting)에 비해 골재생 효과가 우수하다고 한다.

3) 막의 고정성

막과 조직 사이의 견고한 부착을 통해 치유기간에 막의 움직임이 없어야 한다.

4) 무균 처치

세균에 대한 차단성이 확실해야 한다.

5) 하방의 혈병을 안전하게 보호해야 한다.

6) 창상의 안정

술후 창상이 벌어지면서 차단막이 노출되는 것을 최소화해야 한다. 따라서 골유도 재생술을 시행한 부위에는 임시의치 사용을 자제하는 것이 가장 좋고 꼭 사용해야 한다면 하방 연조직과 거의 접촉되지 않게 조정해서 사용해야 한다.

7) 골이식재의 유동성 방지

치유기간 초기 단계에서 10~20um의 움직임에 의해서도 간엽세포가 골아세포가 아닌, 섬유아세포로 바뀌며 이식한 재료들은 흡수되어 소실될 가능성이 크다.

Jensen 등은 동물실험을 통해 수직골유도 재생술의 성공을 위해 다음과 같은 방법들을 언급하였다.

- 1) 골수강을 노출시키기 위해 피질골에 다수의 골천공을 시행한다.
- 2) 가능하면 자가골 이식재가 포함되는 것이 좋다.
- 3) 골대체 재료를 사용할 경우엔 골유도 기능과 골형성 단백질을 함유한 동종골 사용이 추천된다.
- 4) 연조직 침투를 방지하기 위해 차단막을 적절히 사용한다.
- 5) 수용부 혈행 상태가 매우 불량한 경우 고압산소요법이 도움이 될 수 있다.
- 6) 골형성을 촉진시키기 위한 전기자극, mineral or hormon 요법에 대해 언급하였다.

골유도 재생술의 적용증(그림 1-5)

- 1) 발치창 골흡수 보존 및 골재생
- 2) 치조능 증강술
- 3) 상악동저 거상술
- 4) 임프란트 주변 결손부 수복

2 or 3 wall vertical defects, Dehiscence defects associated with dental implant, Fenestration defects associated with dental implants, 발치 후 즉시 임프란트 식립

Surgical procedure

In delayed installation

Implant fixture was placed 5 months after the GBR

Radiographs of 3.5 yr. after function

그림 1. GBR in Implant Dentistry

골이식과 임프란트

그림 2. 47세 여자 환자에서 #47 발치 후 골이식을 시행하고 6주 후에 임프란트를 식립한 증례

A: 초진 시 파노라마 방사선사진. #47 치근단 농양이 존재하며 발치 후 임프란트 식립을 계획하였으나 하방 하치조관까지의 잔존 치조골량이 부족하여 우선 골유도 재생술을 시행하기로 결정하였다.

- B: 술전 구강사진
- C: #47 발치 후 모습
- D: 피판을 거상한 모습. 골결손이 큰 것을 볼 수 있다.
- E: 발치창 소파술을 시행하면서 치근단부에 존재하던 두꺼운 육아조직을 박리한 모습. 추후 창상 봉합에 이용하기 위해 제거하지 않았다.
- F: Bio-Oss를 생리 식염수에 적신 모습
- G: 해동시킨 Regenatorm
- H: Bio-Oss와 Regenaform을 발치창에 이식한 모습
- I: TR-Goretex membrane을 적용한 모습
- J: 박리했던 육아조직으로 차단막 상방을 덮는 모습
- K: 일차 봉합한 모습
- L: 발치 7주 후 구강사진. 양호한 연조직 치유를 보인다.
- M: 피판을 거상하여 Goretex membrane을 노출시킨 모습
- N: Goretex membrane을 제거한 모습. 양호한 골치유 소견이 관찰된다.
- O: 임프란트(Implantium 4.8D/10L placement)를 식립한 모습. 초기 고정은 좋지 않았으며 Periotest로 일차 안정성을 측정한 결과 +19의 수치를 보여 충분한 치유기간을 부여하기로 결정하였다.
- P: 임프라트 식립 3.5개월 후 치근단 방사선시진
- Q: 이차 수술 후 치근단 방사선사진. 5개월 후 이차 수술을 시행했으며 Periotest로 이차 안정성을 측정한 결과 -3의 수치를 보였다.
- R: 최종 보철물 장착 3개월 후 치근단 방사선시진

임프라트

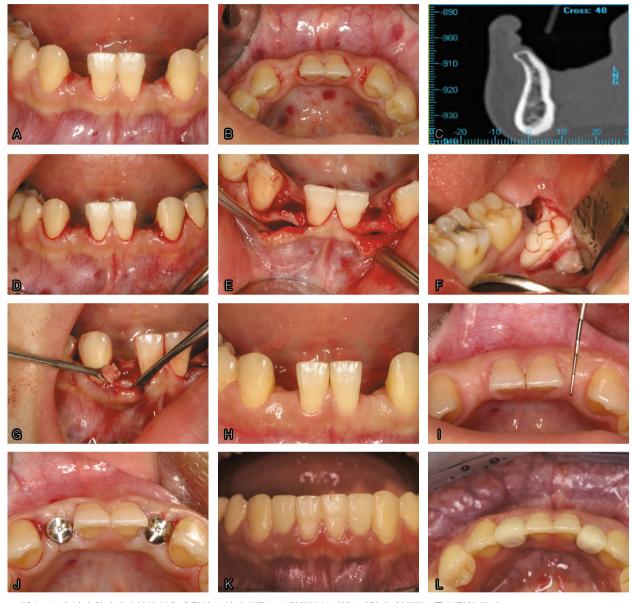
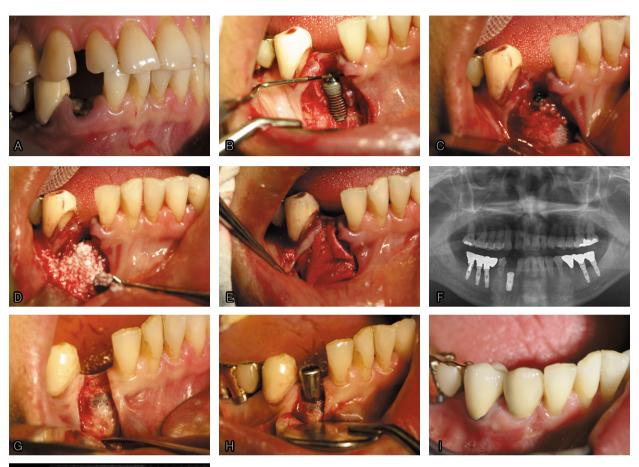



그림 3. 18세 여자 환자에서 하악 양측 측절치 부위의 치조능 수평증강술 시행 4개월 후 임프란트를 식립한 증례

- A: 술전 구강 정면 사진. #32, 42가 소실된 상태이다.
- B: 술전 하악 교합면 사진. 치조능의 협설측 폭경이 협소한 것을 볼 수 있다.
- C: 술전 CT cross-sectional view. #32 부위 치조능의 폭이 협소하고 순측에 함몰 소견이 관찰된다.
- D: 절개를 시행한 모습. #33-43 부위까지 순측 치은열구절개와 무치악 부위에서는 치조정 절개를 시행하였다. 수직 이완절개는 시행하지 않 았다.
- E: #32, 42 순측에 주머니(pouch)를 형성한 모습
- F: 하악 좌측 매복지치를 발치하면서 협측에서 trephine bur로 자가골편을 채취하는 모습
- G: 채취한 자기골편을 분쇄하여 순측에 형성한 주머니에 삽입하였다.
- H: 골이식 4개월 후 구강 정면 사진
- 1: 골이식 4개월 후 하악 교합면 사진, 치조능의 협설측 폭이 증가되었다.
- J: 골이식 4개월 후 임프란트(3-1 Osseotite Certain, #32: 3.25D/11.5L, #42:3.25D/10L)를 무피판 접근법으로 식립한 모습
- K: 상부 보철물 장착 6개월 후 구강 정면 사진. 임프란트 식립 10주 후부터 보철치료를 시작하였다.
- L: 상부 보철물 장착 6개월 후 하악 교합면 시진

- A: 술전 구강사진. #43 잔존치근이 존재하고 있다.
- B: #43 발치 후 임프란트(Implantium 4.8D/14L)를 식립한 모습. 협측 골열개가 심한 것을 볼 수 있다. Periotest로 초기 안정성을 측정한 결과 +0.7의 수치를 보였다.
- C: 협측 골열개 부위에 드릴링 중 수집한 자가골 분말을 이식한 모습
- D: Bio-Oss를 이식한 모습
- E: BioGide membrane을 적용한 모습
- F: 임프란트 식립 후 파노라마 방사선사진
- G: 3개월 후 이차 수술을 시행하여 노출시킨 모습. 양호한 골형성이 관찰되었다.
- H: 치유 지대주를 연결한 모습
- I: 상부 보철물 장착 5개월 후 구강사진
- J: 상부 보철물 장착 10개월 후 치근단 방사선사진

골이식과 임프란트

그림 5. 63세 남자 환자에서 #24 부위 임프란트 식립 후 협측 골천공 부위에 골유도 재생술을 시행한 증례

- A: 술전 구강사진. 발치 6주 경과한 상태이다.
- B: 절개를 시행한 모습
- C: 임프란트(3-I Certain, 4D/15L)를 식립한 모습. 협측에 골천공이 존재하고 있다.
- D: 골천공 부위에 DFDB를 이식한 모습
- E: 창상을 봉합한 모습. 차단막은 사용하지 않았다.
- F: 임프란트 식립 3개월 후 치근단 방사선시진
- G: 상부 보철물 장착 3개월 후 구강시진. 임프란트 식립 5개월 후에 이차 수술을 진행하였다.
- H: 상부 보철물 장착 3개월 후 치근단 방시선시진

임프란트 주변 결손부의 골유도 재생술 적용증(그림 6)

- 1) 골유도 재생술을 요구하는 결손부의 범위에 관한 문헌 정보가 거의 없지만, 최근에는 광범위한 4벽 성 임프란트 주위 골결손부, 협측 혹은 설측벽의 광범위한 결손을 보이는 부위로 제한하는 경향이 있 다. 5벽이나 4벽 결손에서는 입자형 골이식재를 이용한 골유도 재생술이 유용하지만, 3벽의 경우엔 블록골과 입자형 골이식재를 혼합 사용하고, 2벽이나 1벽의 경우에는 블록골 이식의 사용이 추천되 기도 한다.
- 2) 0.5~1mm 이하의 적은 간격을 보이는 좁은 4벽성 결손부는 어떠한 재생술식이 시행되지 않더라도 양호하게 치유되는 경우가 많다.
- 3) 1~2mm의 간격이 있는 작은 결손부는 막을 사용하지 않고 골이식재만을 충전하여 성공적으로 치료 될 수 있다.
- 4) Zitzmann 등은 골유도 재생술은 초기 수직골결손부 크기가 2mm 이상인 경우에 필요하다고 하였 으며, 김수관 교수는 수직적으로 임프란트 나사산 2~3개가 노출되거나 협설측으로 4mm 이상의 결 손이 있을 경우 골유도 재생술이 필요하다고 언급하였다.

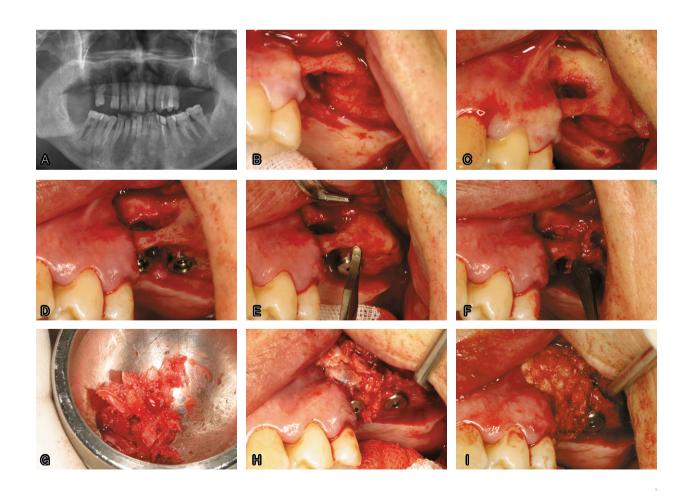


그림 6. 59세 남자 환자에서 #26. 27 임프란트 식립 후 골유도 재생술을 시행한 증례

- A: 술전 파노라마 방사선사진, #26 발치 7주 경과한 상태이다.
- B: 피판을 거상한 모습. #26 발치창 치유가 완전하지 못하다.
- C: 협측으로 피판을 충분히 거상한 결과 협측 치조골 천공이 관찰되었다.
- D: #26, 27 부위에 임프란트(3ન Osseotite Certain, #26:5D/15L, #27:5D/11.5L)를 식립한 모습. #26 부위에서는 근첨부 5~6mm에서만 초기 고정을 얻을 수 있었으며 주변에 환상의 골결손이 존재하였다.
- E: 협측 자가골을 치즐로 골절시키는 모습
- F: 협측 치조골을 골절시켜 내측의 임프란트와 접촉되도록 하였다.
- G: 상악결절에서 채취한 자가골
- H: 임프란트 주변 결손부에 자가골을 이식한 모습
- I: 상방에 Regenaform을 추가로 이식한 모습
- J: TR-Goretex membrane을 적용하고 Goretex suture로 고정한 모습
- K: 봉합한 모습
- L: 임프란트 식립 후 sinus panoramic view
- M: 7개월 후 이차 수술을 시행하여 치유 지대주를 연결한 모습
- N: 상부 보철물 장착 1개월 후 협측 구강사진
- O: 상부 보철물 장착 5개월 후 치근단 방시선사진

골결손부의 임상적 분류(Tinti and Parma-Benfenati)

1. 발치창 (Extraction socket)

- 1) Class I: 골 외벽의 형태가 완전한 경우
- 2) Class II: 골 외벽의 형태가 완전하지 않은 경우

2. 골천궁 (fenestration)

치조정에서 떨어진 부위에 발생하는 골결손을 의미한다. 치조골 순측의 함몰로 인해 발생한다.